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Security-Constrained Transmission Topology
Control MILP Formulation Using Sensitivity Factors

Pablo A. Ruiz, Member, IEEE, Evgeniy A. Goldis, Aleksandr M. Rudkevich, Member, IEEE,

Michael C. Caramanis, Member, IEEE, C. Russ Philbrick, Senior Member, IEEE, and

Justin M. Foster, Member, IEEE

Abstract—A transmission topology control (TC) framework
for production cost reduction based on a shift factor (SF) rep-
resentation of line flows is proposed. The framework can model
topology changes endogenously while maintaining linearity in the
overall Mixed Integer Linear Programming (MILP) formulation
of the problem. In large power systems it is standard practice
to optimize operations considering few but representative con-
tingency constraints. Under these conditions and when tractably
small switchable sets are analyzed, the shift factor framework has
significant computational advantages compared to the standard
Bθ alternative used so far in TC research. These claims are
supported and elaborated by numerical results on full models
of PJM with over 13,000 buses. We finally present analytical
investigations on locational marginal price (LMP) computation
in our shift factor TC framework and their relation to LMPs
computed for problems without TC. Also, we discuss practical
implementation choices such as sufficient conditions on lower
bounds that allow selection of large numbers employed in the
MILP formulation.

NOMENCLATURE

Scalars are indicated by lower case italic, vectors by lower

case bold, matrices by upper case bold, and sets by upper

case script characters, indexed appropriately. Upper limits are

indicated by an over-bar, and lower limits by an under-bar.

Optimal solutions of the problem without topology control are

denoted by an asterisk. Sensitivities are indicated with Greek

characters.

Indices

m,n Buses.

k, ℓ Lines.

mℓ Line ℓ from bus.

nℓ Line ℓ to bus.

τ Contingency topology.
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Sets

Ln+ Branches whose to node is n.

Ln− Branches whose from node is n.

S Switchable branches.

M Duples {ℓ, τ} where branch ℓ is monitored under

contingency τ , and branch ℓ is not switchable.

Parameters and Variables for Contingency Topology τ

bℓτ Branch ℓ susceptance (under contingency τ ).

fℓτ Branch ℓ flow.

f
ℓτ
, f ℓτ Transmission limits of branch ℓ.

θnτ Bus n voltage angle.

vℓτ Flow-cancelling transaction for branch ℓ.
vτ Vector of flow-cancelling transactions.

ψm
ℓτ Shift factor for line ℓ, bus m.

φmn
ℓτ PTDF of line ℓ for a transfer from m to n.

okℓτ LODF of line ℓ for the outage of line k.

ΦSS
τ PTDF matrix of switchable lines for transfer between

switchable line terminals.

Other Parameters and Variables

1 Vector of ones.

I Identity matrix.

bℓ Susceptance of branch ℓ.
zℓ State of branch ℓ.
cpn Generation variable cost at bus n.

czℓ Branch ℓ switching cost.

pn Generation at bus n.

p
n
, pn Generation limits of unit at bus n.

p Vector of nodal generation.

ln Load at bus n.

l Vector of nodal loads.

λ Power balance shadow price.

µ,µ Shadow prices of monitored branch constraints.

α,α Shadow prices of switchable branch constraints.

ΨS Matrix of shift factors of switchable branches.

ΨM Matrix of shift factors of monitored branch-

contingency pairs.

OMS LODF matrix of monitored branches for the outage

of switchable branches.

M Sufficiently large number.

N Number of buses.

G Number of generators.

T Number of contingency topologies.
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Z Number of switchable lines.

L Number of transmission lines.

C Number of monitored/contingent pairs.

I. INTRODUCTION

POWER flows distribute over an AC network following

Kirchoff’s laws. As such, flows depend on load pro-

file, generation dispatch and transmission topology, including

transmission system characteristics, settings and connectivity

status. Currently, few transmission branches1 have flow control

devices. The open/closed state of all other branches is typically

considered to be non-controllable in operations decision mak-

ing, such as economic dispatch (ED). Transmission topology

changes tend to be considered as decision process inputs,

such as a pre-specified contingency list, or as transmission

maintenance schedules, and not as decision variables.2

The lack of topology control (TC) application persists in

spite of substantial research in the area over the last decades.

Corrective control [2]–[4], security enhancements [5], [6] and

loss minimization [7], [8] are some examples of past inves-

tigations. More recently, topology control has been examined

for its potential production cost reduction in ED [9]–[11] and

unit commitment (UC) [12]. These cost saving opportunities

are very promising, with reasonable projections of quantitative

results obtained for large systems [13] suggesting several

billion dollars in annual savings in the U.S. alone. Production

cost minimization is the focus of this paper.

Computational complexity has been a key barrier to sys-

tematic use of TC for production cost minimization. The

problem has been formulated as a mixed integer linear pro-

gram (MILP) using the Bθ representation of power flows

under DC assumptions. The MILP may incorporate security

constraints by solving explicitly for the voltage angles under

each contingency state as part of the optimization problem.

This is in contrast to standard security-constrained optimal

power flow (SCOPF) implementations (without TC), where

contingency flow constraints are modeled using sensitivities

(shift factors), not requiring contingency state calculations

during the optimization solution [14] (contingency states are

calculated during contingency analysis checks of proposed

SCOPF solutions). The security-constrained Bθ TC formu-

lation has been used to provide and analyze optimal TC

in small systems. While the Bθ formulation preserves the

network power flow equations’ sparsity, it suffers from a very

large size and limited scalability. For example, the problem

size does not decrease with a smaller number of lines whose

connectivity is controlled, or a smaller monitored/contingency

element pair set. Moreover, each contingency modeled re-

quires a full transmission model. As such, the model size

explodes with security constraints: the SCOPF model with

TC on the IEEE 118-bus test system with n − 1 security

constraints requires 63,000 variables and 200,000 constraints,

compared to approximately 500 variables and 1000 constraints

1In this paper, a transmission branch refers to a facility connecting two
buses of the network, such as a line or a transformer.

2Exceptions exist, such as operating guides which specify topology changes
upon the occurrence of contingencies or other pre-specified phenomena [1].

in the absence of contingency analysis [11]. This leads to

prohibitively slow solution times, with integrality gaps of the

SCOPF with TC of about 60% after six days of run time

[11]. While there have been significant improvements in MILP

solvers and computer resources since the publication of [11],

and while formulations have been improved with the addition

of symmetry breaking and anti-islanding constraints [15]–

[17], the resulting computation times are still very far from the

required times for operational deployment in real systems. For

example, a recent publication reports over 50 hours to solve

an OPF with TC for the Polish 2383-bus system to optimality

[18], without security constraints.

To overcome computational tractability issues, heuristic

approaches have been developed for the TC problem. Some

of these heuristics use the Bθ MILP formulation [11]. While

parallel algorithms help to lower computational (wall) time,

the reduction in computational effort is not enough for prac-

tical applications (e.g., an algorithm to optimize a single

line switching with N-1 reliability takes over 30 seconds

with 24 cores in a small, 300-bus system [19]). Alternative

approaches using sensitivity analysis have been very successful

in reducing computational times in SCOPF where dispatch

is optimized for a single time period [16], [20], [21]. These

approaches have been extended to include AC power flow

modeling [22]–[24]. However, the extension of these tractable

approaches to multi-interval optimization (e.g., UC) is not

trivial. Intertemporal constraints, such as maximum number

of breakers that can change state on a given interval and max-

imum switching frequencies, combined with other constraints

such as the total number of breakers that can be open at any

point in time, require the topology optimization over a multiple

time period horizon.

This paper discusses an alternative MILP formulation of

the TC problem, recently introduced in [25], [26], called

the shift factor TC formulation. This new formulation can

be applied in both single and multi-period decision mak-

ing including SCOPF, security-constrained UC, and longer

timeframe problems. Consistent with the usual transmission

modeling approach in market management systems, the new

formulation uses sensitivities to model transmission flows.

Instead of changing branch admittances, open breakers are

emulated by the use of flow-cancelling transactions, e.g., pairs

of injections and withdrawals at the ends of opened lines that

drive the total flow through the line interface with the rest of

the system to zero. Compared to the Bθ MILP formulation, the

shift factor TC formulation is compact and dense, and its size

decreases as the number of monitored/contingent transmission

elements pairs and the number of switchable lines decrease. As

such, the formulation is especially useful when few constraints

need to be explicitly enforced, as is indeed the case in most

systems, and when the switchable branches are few compared

to the number of branches in the system.

The paper contributes to the state of the art by (a) comparing

the numerical performance of the two MILP TC formulations

on a real, very large scale system (13,000-bus historical PJM

model) in terms of solution time, size and sparsity statistics,

and (b) discussing practical application aspects of the shift

factor formulation and TC formulations in general, such as

Page 2 of 9IEEE PES Transactions on Power Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

LMP calculation from the shift factor TC formulation, bounds

for the sufficient magnitude of the number M used, island

detection and switching costs.

The rest of the paper has eight sections. Section II presents

the basic power flow model and notation. Section III provides

an overview of the Bθ formulation of TC. Section IV describes

the modeling of line openings using flow-cancelling trans-

actions. Section V presents the shift factor TC formulation.

Section VI discusses LMP calculation in the shift factor TC

formulation, and Section VII deals with practical formulation

implementation issues. Section VIII compares the computa-

tional performance of the two formulations for the SCOPF

with TC. Section IX gives concluding remarks and describes

future work.

II. POWER FLOW MODEL

The basic underlying SCOPF modeling assumptions used

in the two TC formulations are presented in this section.

Consider a power system in which linearized lossless3 DC

assumptions hold. System buses are denoted by n = 1, . . . , N ;

bus N is the reference bus, with voltage angle 0. Each branch

ℓ = 1, . . . , L connects an ordered pair of buses (mℓ, nℓ), with

the convention that the flow direction of branch ℓ is from
bus mℓ and to bus nℓ. Each branch ℓ is assumed to be closed

initially, and is assumed to have non-zero, finite reactance and

zero resistance, leading to a non-zero, finite susceptance bℓ.
At any point in time, some branches may be disconnected

(open), for example due to the occurrence of a contingency.

The resulting transmission topology τ is characterized by the

zero value of line susceptance bℓτ for each open branch ℓ in

τ . Generation and load are assumed to be independent of the

topology, although they need not be (e.g., under corrective

control).

The flow on line ℓ under contingency τ is given by

fℓτ = bℓτ (θnℓτ − θmℓτ ) , (1)

where θℓτ is the voltage angle of node n under topology τ .

Alternatively, the power flow can be expressed as an explicit

function of the loads and generation,

fℓτ =
∑

n

ψn
ℓτ (pn − ln) . (2)

The injection shift factor ψn
ℓτ gives the variation in flow of

line ℓ under topology τ due to changes in the nodal injection

at bus n [14], with the reference bus assumed to ensure the

real power balance. Shift factors are a function of transmission

facilties’ susceptances and the topology (τ ).

The power transfer distribution factor φmn
ℓτ , or PTDF, gives

the sensitivity of the flow on line ℓ with respect to a unit of

power transfered from bus m to bus n under topology τ , and

can be expressed in terms of shift factors as [14]

φmn
ℓτ = ψm

ℓτ − ψn
ℓτ . (3)

The line outage distribution factor okℓ , or LODF, gives the

sensitivity of line ℓ flow with respect to a reduction in the line

3The extension to incorporate losses is provided in [26]

k flow, okℓ = −∂fℓ/∂fk. The LODF okℓ is given by [14]

okk = −1, (4)

okℓ =
φmknk

ℓ

1− φmknk

k

, ℓ 6= k, φmknk

k 6= 1, (5)

and is not defined for all ℓ 6= k if φmknk

k = 1, because

the outage of such lines creates islands [27], which require

generation re-dispatch and/or load shedding. The PTDF φmknk

k

of line k for transactions from its from bus to its to bus is

positive and between 0 and 1,

1 ≥ φmknk

k > 0. (6)

III. Bθ TOPOLOGY CONTROL FORMULATION

The typical MILP formulations of topology control prob-

lems model transmission flows using (1), i.e., explicitly keep-

ing the susceptances as inputs and voltage angles as decision

variables [10]–[12], hence the name Bθ formulation. The

supply-demand balance is enforced at the nodal level. This

model is used because the linear inclusion of binary variables

associated with the connection or disconnection of branches is

more intuitive in it than it is with the shift factor power flow

model, which has a nonlinear dependence on susceptances and

connectivity (equation (2)).

In the remainder of this paper, τ will indicate the forced

topology changes due to a contingency. The selected topology

changes due to controlled actions are specified by the 0/1
(open/closed) status of each switchable branch ℓ, indicated by

zℓ. Together, τ and the set of zℓ define a transmission topology.

Without loss of generality, assume there is at most one

generator per bus, and it has constant marginal costs. The

SCOPF with TC minimizes generator and switching costs (7)

to serve load subject to physical constraints such as generator

(8) and line (9) limits. The incorporation of TC requires the

addition of a binary variable (13), which renders the problem

an MILP. This variable represents line status, taking the value

of 1 when the line is closed and 0 when open. The power

balance at each bus is enforced by (10). In addition, (11) and

(12) define flows as a function of voltage angles, where M is

a sufficiently large number. The line susceptance bℓτ takes the

value of 0 when contingency τ outages line ℓ, and the value

of bℓ otherwise. Note that this formulation computes angles

for all buses and flows on all lines for each contingency τ of

a pre-specified contingency list.

C = min
p,θ,f ,z

∑

n

cpnpn +
∑

ℓ

czℓ (1− zℓ) (7)

s.t. p
n
≤ pn ≤ pn, ∀n (8)

f
ℓτ
zℓ ≤ fℓτzℓ ≤ f ℓτzℓ, ∀ℓ, τ (9)

∑

ℓ∈Ln+

fℓτ −
∑

ℓ∈Ln−

fℓτ + pn = ln, ∀n, τ (10)

bℓτ (θnℓτ − θmℓτ ) + (1− zℓ)M ≥ fℓτ , ∀ℓ, τ (11)

bℓτ (θnℓτ − θmℓτ )− (1− zℓ)M ≤ fℓτ , ∀ℓ, τ (12)

zℓ ∈ {0, 1} , ∀ℓ (13)
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In the remainder of the paper, problem (7)-(13) is referred

to as the Bθ TC formulation. Let the number of generators

be G, the number of contingencies be T and the number

of switchable lines be Z. The Bθ TC formulation has ap-

proximately G+ (N − 1)T + LT + Z decision variables and

2G + 4LT + NT + Z constraints. The number of non-zero

problem entries is o
(

(L+N)T
)

. As such, the problem di-

mension is essentially insensitive to the number of switchable

lines and monitored transmission constraints, in contrast to the

formulation to be introduced next.

IV. FLOW-CANCELLING TRANSACTIONS

The direct approach to modeling a branch outage is to

set the branch susceptance to zero or to remove it from the

susceptance matrix, as the Bθ formulation does. An alternative

approach is to maintain the original topology and susceptances,

but to apply a power transfer across the outaged branch that

results in the same changes in the remaining branch flows,

so that from the point of view of the rest of the system, the

branch is outaged.
The modeling approach of representing outages as a flow-

cancelling transaction is widely known, for example, as a tool

to derive LODFs [14]. This approach is valid as long as no

islanding results from the outages. Consider first the derivation

of a flow-cancelling transaction for a single line. To model the

outage of line k, which does not island the system, let m′
k and

n′k be infinitely close to the terminal buses mk and nk along

line k (Fig. 1). Let there be a transaction from m′
k to n′k whose

magnitude vkτ is such that the impact of the trasaction on the

rest of the system is equivalent to the opening of line k. To

meet this condition, the flow-cancelling transaction must make

the flow on the interface between the rest of the system and

line k, i.e., each of the infinitesimaly short lines m′
k to mk

and n′k to nk, to be zero. Using the PTDF definition,

fkτ −
(

1− φ
m′

k
n′

k

kτ

)

vkτ = 0. (14)

Hence,

vkτ =
fkτ

1− φ
m′

k
n′

k

kτ

. (15)

The flow-cancelling transaction is well defined, since φ
m′

k
n′

k

kτ 6=
1 when the non-islanding assumption holds [27].

The vector of flow-cancelling transactions that model the

outage of a (non-islanding) set S of lines can be obtained

by applying the principle of superposition, i.e., by enforcing

condition (14) for all lines in the set [28],

fτℓ − vℓτ +
∑

k∈S

φmknk

ℓτ vkτ = 0, ∀ℓ ∈ S. (16)

The PTDFs in (16) are those for transactions between the

terminal points of lines in S , with respect to the flows of lines

in S . We term the matrix ΦSS
τ containing these PTDF as the

self-PTDF matrix of set S . As long as there is no islanding,

(16) has a unique solution vτ . Under islanding conditions, net-

work flows are not well-defined without additional equations

enforcing power balance in each island.4

4If S is islanding, there are infinite vτ that meet (16) but these flow-
cancelling transactions may not represent islanded operation

m n

m
 
’ n

 
’

f
 k − (1 − φ k      ) vk = 0

v
 k v

 k

m ’n ’

f
 k + φ k     vk

m ’n ’

m n

Fig. 1. Opening line k (top) is equivalent from the point of view of the rest
of the system as inserting a flow-cancelling transaction at virtual buses m′

and n′, infinitely close to m and n, respectively, and along line k (bottom).

The utilization of flow-cancelling transactions in our new

MILP topology control formulation is discussed below.

V. A COMPACT TOPOLOGY CONTROL FORMULATION

For a given contingency τ there are typically only a few

transmission elements that are likely to reach their limiting

flow and therefore need to be monitored. For example, if lines

k and ℓ are parallel, it may be the case that if all transmission

constraints are met in the base topology, ensuring that line ℓ
does not overload after the outage of parallel line k may be

sufficient to ensure that no transmission constraint violations

will occur with the outage of line k. In other words, all

other contingency constraints in (9) would not bind. Even

in the base, no-contingency topology, the number of limiting

transmission branches in actual systems is typically a very

small fraction of the total number of lines and transformers.5

To reduce the problem size by modeling only significant

constraints, the SCOPF problem is usually formulated using

(2) instead of (1). This allows the substitution of (10) by a

single power balance equation,
∑

n

(pn − ln) = 0. (17)

Moreover, all equations/rows in (2) that are not related to

monitored branches in each contingency topology are elim-

inated. While the resulting problem is significantly smaller,

both in terms of constraints and variables (e.g., voltage angles

are no longer modeled explicitly), the remaining equations are

more dense since shift factors form a dense matrix while the

susceptance terms in (1) form a very sparse matrix. Still, due to

the very small number of monitored constraints, reduced size

favors the dense formulation which in practice solves faster.

5For example, the number of constraints binding in PJM real-time markets
is usually less than 10, although PJM monitors over 6500 transmission
branches and models over 6000 contingencies in its contingency analysis
applications [29].
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For each contingency τ , let vℓτ be the flow-cancelling trans-

action to model the state of switchable line ℓ. For the closed

switchable lines, (2) needs to be enforced with appropriate

limits, similar to (9). For the open switchable lines, (16) needs

to be enforced in addition to (2). This is achieved through

additional constraints,

f
τ,ℓ
zℓ ≤

∑

n

ψn
ℓτ (pn − ln)− vℓτ

+
∑

k∈S

φmknk

ℓτ vkτ ≤ fτ,ℓzℓ, ∀ℓ ∈ S, τ (18)

−M (1− zℓ) ≤ vℓτ ≤M (1− zℓ) , ∀ℓ ∈ S, τ. (19)

For a sufficiently large M , constraints (19) force the flow-

cancelling transactions to be 0 for all closed lines, while

allowing them to be unrestricted for all open lines.

Note that the flow-cancelling transaction vℓτ is a function of

the contingency τ as well as the selected state z of switchable

branches, in the same way that angles in (11-12) depend on z

and τ . That is, each flow-cancelling transaction is represented

by a set of magnitudes: one for the base case and one for

each contingency, and all of these magnitudes depend on

the selected z. Opening a branch will require different flow-

cancelling injection/withdrawal pairs under different topolo-

gies induced by the outage of contingency branches.

Let M be the set of duples {ℓ, τ} where branch ℓ is

monitored under contingency τ , and branch ℓ is not switchable.

In the remainder of the paper, a monitored branch means

a monitored branch that is not switchable, as all switchable

lines are explicitly included in the problem formulation, and

thus monitored. For monitored branches, the flow constraints

incorporate the impacts of flow-cancelling transactions for

switchable lines, and are given by

f
τ,ℓ
zℓ ≤

∑

n

ψn
ℓτ (pn − ln)

+
∑

k∈S

φmknk

ℓτ vkτ ≤ fτ,ℓzℓ, ∀{ℓ, τ} ∈ M. (20)

The resulting formulation of the SCOPF with TC is

C = min
p,θ,f ,z

∑

n

cpnpn +
∑

ℓ

czℓ (1− zℓ) (21)

s.t.
∑

n

(pn − ln) = 0, (22)

p
n
≤ pn ≤ pn, ∀n (23)

f
τ,ℓ

≤
∑

n

ψn
ℓτ (pn − ln)

+
∑

k∈S

φmknk

ℓτ vkτ ≤ fτ,ℓ, ∀{ℓ, τ} ∈ M (24)

f
τ,ℓ
zℓ ≤

∑

n

ψn
ℓτ (pn − ln)− vℓτ

+
∑

k∈S

φmknk

ℓτ vkτ ≤ fτ,ℓzℓ, ∀ℓ ∈ S, τ (25)

−M (1− zℓ) ≤ vℓτ ≤M (1− zℓ) , ∀ℓ ∈ S, τ, (26)

zℓ ∈ {0, 1} , ∀ℓ (27)

Problem (21)-(27), referred to as the shift factor TC formu-

lation, yields the same optimal solution as the Bθ formula-

tion as long as the transmission constraints that bind in the

Bθ formulation are modeled in the shift factor formulation.

However, problem size and complexity are quite different.

The shift factor TC formulation has G + TZ + Z decision

variables and 1 + 2G + 2C + 4TZ + Z constraints, where

C is the number of monitored/contingency pairs. The number

of non-zero problem entries is o
(

(N + Z) (C/T + Z)T
)

. If

the number of switchable branches and monitored/contingency

pairs are relatively small, the shift factor formulation is sig-

nificantly smaller than the Bθ formulation in every sense. As

the number of switchable, monitored and contingency lines

becomes sufficiently large, the number of non-zero elements

in the shift factor formulation becomes larger than in the Bθ
TC formulation, although the number of constraints always

remains smaller in the shift factor formulation, as there is a

single power balance equation.

VI. LOCATIONAL MARGINAL PRICES

While the shift factor TC formulation is consistent with

standard SCOPF formulations used in nodal markets, there

are additional constraints (25) that require modifications to the

standard locational marginal price (LMP) expressions used in

the markets. This section determines these modifications, and

shows how the LMPs in the shift factor TC formulation can

be equivalently expressed in the usual form as the LMPs of a

SCOPF (without TC) for the optimal z.

By definition, the LMPs for the SCOPF with TC (21)-(27)

equal the derivative of the Lagrangian with respect to a change

in nodal load [30]. In this section, we use vector notation for

brevity and clarity. Let the vectors of shadow prices associated

with constraints (22), (24), and (25) be denoted by λ, µ and

µ, and α and α, respectively. Using these shadow prices, the

nodal prices π under the shift factor TC formulation are given

by

π = −
(

λ1+ΨM
′

(µ− µ) +ΨS
′

(α−α)
)

, (28)

where ΨS and ΨM are matrices that consist of the collection

of ΨS
τ and ΨM

τ , for all contingencies τ , respectively. Also,

the shadow prices µ, µ, α and α have as elements the

corresponding shadow prices for each contingency.

To gain intuition with respect to (28), consider the optimal

(base) topology derived from the solution z = z∗ of (21)-(27).

Also, relabel ex-post any switchable lines which remain closed

in the optimal topology as monitored (including relabeling as

elements of µ and µ the terms of α and α, respectively,

associated to these closed switchable lines). The shift factor

matrix for the optimal topology z∗ is given in [14] as

ΨM∗ = ΨM +OMSΨS , (29)

where OMS is the LODF matrix indicating the impact of

lines openings on monitored lines for each contingency. In

addition, the LMPs for the optimal topology z∗ are defined in

the standard manner (see [14]), as

π
∗ = −

(

λ∗1+ΨM∗
′

(µ∗ − µ
∗)
)

. (30)
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Since the SCOPFs with TC and without TC for the optimal

topology z∗ yield equivalent solutions, the LMPs (31) and

shadow prices associated with flow limits on transmission

elements and flowgates (32) must be equivalent:

π = π
∗, (31)

µ = µ
∗. (32)

Substituting (28) and (30) into (31), and cancelling the

energy component yields,

ΨM
′

(µ− µ) +ΨS
′

(α−α) = ΨM
′
∗(µ∗ − µ

∗). (33)

Furthermore, substituting (29) and (32) and appropriately

cancelling like terms yields,

α−α = OMS
′

(µ− µ). (34)

Thus, based on [16], the shadow prices α−α are interpreted

as (minus) the total derivative of the generation costs with

respect to reducing flow on the (opened) switchable lines.

Finally, by substituting (34) into (28) we see that the LMP

(28) derived from the SCOPF with TC can be expressed in

the standard form as

π = −
(

λ1+ (ΨM +OMSΨS)′(µ− µ)
)

. (35)

VII. FORMULATION IMPLEMENTATION ASPECTS

This section discusses issues of practical importance related

to the implementation of TC formulation – switching costs,

bounds on M and a method for fast islanding conditions

detection which facilitate the implementation of the shift factor

TC formulation.

Switching costs czℓ are included in the objective functions

(7) and (21) for completeness, although they need not be used.

In general, increased frequency of breaker operation increases

the cost of circuit breaker maintenance. However, these cost

are negligible compared to congestion cost benefits provided

by topology control. For example, the overhaul cost of a

72.5 kV SF6 breaker is in the $15,000-$20,000 range [31].

The overhaul frequency is once every 2000-5000 operations

depending on the type of breaker, and it may be deferred

with X-ray diagnostics. Thus, the switching costs are less

than $10/switching operation, and could be as low as a few

dollars. Switching costs may also be used for computational

reasons, to discourage solutions with spurious switchings (e.g.,

switching operations that do not add value but do not lead

to increased congestion either), or to filter out switching

operations that do not provide significant benefits. Note that

the objective functions in this paper assume that all branches

are initially closed, and that the switching costs are uniform

for all breakers; should that not be the case, the appropriate

formulation adjustments would be implemented.

In the shift factor TC formulation, the only parameter that

is left without a precise value is M , defined simply as a

sufficiently large number. From (15), vkτ = fk + φm
′n′

kτ vkτ .

Thus, the value of the flow-cancelling transaction is equal

to the flow on line k when the angle difference between its

terminals is equal to the angle difference that occurs when the

line is opened (for an illustration, refer to Fig. 1). Hence, if

line k is open, for any contingency topology τ the following

holds (as long as there is no islanding):

vkτ = bk (θnkτ − θmkτ ) . (36)

From (36), we can see that M can be bounded by the max-

imum potential value of the product of the line susceptance

and angle difference. Indeed,

max
k,τ

(vkτ ) = max
k,τ

(bk (θnkτ − θmkτ )) (37)

≤ max
k

(bk)max
k,τ

(θnkτ − θmkτ ) (38)

= M. (39)

Note that this same bound is applicable for setting the M
value in the Bθ formulation, since fk = 0 when zk = 0, so

that the M value from (39) ensures that (11) and (12) are met.

Under normal conditions, islanding operation is undesirable,

leading to incorrect description of constraints and possibly

reliability concerns. As such, fast islanding detection, both for

the normal state and for all contingency states, is important

when change of the transmission topology is contemplated.

As in the previous section, let us relabel ex-post any switch-

able lines which remain closed in the optimal topology as

monitored. Using results in [27], islanding can be detected

quickly by evaluating the singularity of matrices
(

ΦSS
τ − I

)

for all contingencies τ . Note that these matrices are already

available. Also, while the number of such matrices could be

non-trivial, the matrices are relatively small, with size equal

to the number of branches opened in the optimal topology.

Finally, the singularity evaluations can be done in parallel,

further speeding the analysis.

VIII. NUMERICAL EXPERIENCE ON A LARGE SYSTEM

The shift factor TC formulation was previously compared

against the Bθ TC formulation using the IEEE 118-bus test

system in [25]. Analysis of a range of switchable sets, varying

from no switchable lines to 24 switchable lines (i.e., over 12%

of the 194 lines in the system) yielded that the shift factor TC

formulation has lower computational times for all switchable

set sizes analyzed. However, the computational savings were

more significant for smaller switchable sets, as expected due

to the dependence of the shift factor formulation size on the

cardinality of the switchable set.

In this paper we compare the performance of both formula-

tions using a large, real system model. The model represents in

detail the state of PJM’s footprint and its neighboring areas on

June 23, 2010 at 8:30 am. This interval was selected based on

the average results obtained on it when applying tractable TC

policies such as those in [16]. The underlying topology, load,

losses, interchange and unit commitment is as archived by the

PJM EMS for that 5-minute interval. Generation economic

and constraint data are from the PJM real-time market for

the simulated day. The model has 857 dispatchable PJM

generators, 13,436 buses and 18,415 branches.

Thirty contingency constraints and 156 no-contingency con-

straints were enforced. The 30 contingency constraints include

20 different transmission contingencies (some constraints

share the same contingency). The contingency constraint limits
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are based on emergency ratings of the corresponding moni-

tored transmission branch. These constraints are based on the

monitored constraints in the PJM real-time markets during the

week of June 20-26, 2010.

Both TC formulations were implemented in AIMMS 3.12

and CPLEX 12.5 was used to solve the optimization programs.

Simulations were run on a 64-bit workstation with two 2.93

GHz Intel Xeon processors (8 cores total) and 24 GB of RAM.

The convergence criterion was an optimality gap tolerance of

0.05%. A value of 5000 was used for M in both formulations

(as discussed in Section VII, the M values in both formu-

lations are equivalent). Unless indicated explicitly, the same

default CPLEX settings were used to solve problems with

both formulations (the only difference is for the cases where

we tested the barrier method for the Bθ formulation). A time

limit of 1 hour was used for all simulations.

The TC formulations implemented and tested include two

types of constraints not detailed in the previous sections for

simplicity. We added connectivity constraints that ensure that

each generator and load bus is connected by at least two lines,

and symmetry-breaking constraints that provide a preferred

ordering for each group of identical parallel lines.

Two sets of cases were evaluated, with and without con-

tingency constraints, to illustrate the significant impacts of

contingency constraints on solution times. First, each case

was solved without TC variables (e.g., standard SCOPF) to

provide benchmarks. Then, TC variables were included and

both formulations were compared in terms of solution times

and topology change statistics. To produce statistically mean-

ingful results, each set was run for 20 cases constructed by

taking random samples of fuel prices and wind availabilities.

Additionally, for the Bθ formulation we evaluated the default

Dual Simplex method as well as the Barrier method available

in CPLEX for solving the LP subproblems of the MIP.

Table I sumarizes solution time statistics across the 20

samples, reported in seconds, for the cases without TC (using

the CPLEX LP solver). The abbreviation DS refers to the Dual

Simplex method used by default in CPLEX and B refers to

the Barrier method.

TABLE I
SOLUTION TIME STATISTICS – WITHOUT TC [S]

Without Contingencies With Contingencies
Bθ - DS Bθ - B Ψ Bθ - DS Bθ - B Ψ

Avg 0.65 0.54 0.12 37.28 80.24 0.67
Min 0.42 0.50 0.06 14.49 26.80 0.64
Max 0.91 0.62 0.14 74.37 541.09 0.70
Std Dev 0.13 0.03 0.02 14.31 129.69 0.02

As seen in Table I, the shift factor (Ψ) formulation solves

significantly faster than the Bθ formulation, especially when

contingency constraints are enforced, when the average Ψ
formulation solution time is over 500 times faster. It appears

that despite the sparsity benefits of the Bθ formulation, the

significant increase in variables and constraints shown in Table

II results in much slower solution times. Also of note is the

consistency in solution times observed for the Ψ formulation:

the standard deviation of the solution time is about 3% of

the average solution time, where for the Bθ formulation the

ratio is of over 38%. It is these advantages in compactness

and solution time magnitude and consistency that make the

Ψ models of transmission constraints the preferred choice for

industrial decision support tools used in very large systems.

For the Bθ formulation, the Barrier method performs better

for the small case without contingencies but for the large case

with contingencies it becomes less stable as shown by the

high standard deviation value. Specifically, for two samples

the solution times were significantly larger than for all other

samples (351 and 541 seconds respectively). If these times are

excluded from the statistics of Table I, the minimum time and

standard deviation is still higher than for the Dual Simplex

method but the average and max times are very similar.

TABLE II
CONSTRAINT & VARIABLE STATISTICS – NO TC WITH CONTINGENCIES

Variables Bθ Ψ

Flow 386, 715 0

Voltage Angle 282, 156 0

Generator 857 857

Total 669, 728 857

Constraints Bθ Ψ

Flow Limits (2x) 586 586

Kirchhoff 386, 715 0

Nodal Balance 282, 156 1

Generation Limits (2x) 857 857

Total 671, 757 2, 886

Matrix Density (%) 0.0036% 21.28%

TABLE III
TOPOLOGY CHANGE STATISTICS WITH 20 SWITCHABLE BRANCHES

Without Contingencies With Contingencies
Openings Bθ - DS Bθ - B Ψ Bθ - DS Bθ - B Ψ

Median 4 4 3 6 3 9
Min 2 2 1 0 0 3
Max 12 10 7 20 20 15

Savings Bθ - DS Bθ - B Ψ Bθ - DS Bθ - B Ψ

Prod. Cost (%) 0.6 0.6 0.6 0.2∗ 0.8∗ 1.1∗

Cong. Cost (%) 4.5 4.5 4.5 2.8∗ 6.6∗ 9.6∗

∗ Savings for the Bθ formulation are lower than those of the Ψ formulation
because of the lack of convergence within an hour of several scenarios with
the Bθ formulation (including all samples with the barrier method).

Next we introduce 20 switchable branches into both for-

mulations. The switchable lines were selected based on the

solutions of heuristic approaches using sensitivity metrics [16].

The topology change statistics and the average production

cost savings and congestion cost savings are in Table III

(congestion cost savings are defined as the production cost

savings relative to the cost of congestion without TC). For the

case without contingencies, both formulation yielded almost

identical savings (they are not identical since we are solving

with a 0.5% MIP gap), although the solutions were different,

and the Ψ formulation tended to open fewer lines. With the

inclusion of contingencies, the Bθ formulation reaches the one

hour time limit without converging in 11 out of 20 samples

with the dual simplex algorithm, and does not converge within

an hour for any sample for the barrier algorithm. Thus,

there are very significant differences between the “solutions”
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provided by the two formulations and by the two solution

methods at the end of the hour.

Table IV shows solution time statistics when we intro-

duce TC variables into both formulations. Including the 20

switchable lines in the case with contingencies increases the

average solution time of the Bθ formulation by about 85 times

from the OPF without TC, whereas the increase for the Ψ
formulation is about 10 times. As a result, the Ψ formulation

solves about three orders of magnitude faster than the Bθ
formulation. The range of solution times for the Ψ formulation

remained relatively tight, with a standard deviation of the

solution time of less than 15% of the average time. The Ψ
formulation reached the MIP gap tolerance for all cases in

a few seconds, where the Bθ formulation did not reach the

convergence tolerance within an hour in most samples, as

stated before. Hence, the actual average and maximum solution

times for converged solutions are higher than those in Table

IV for the Bθ formulation. From these results, we conclude

that in contrast to the Bθ formulation, the Ψ formulation is

practical for large systems when the number of switchable

lines and contingency constraints is small.

TABLE IV
SOLUTION TIME STATISTICS – WITH TC [S]

Without Contingencies With Contingencies6

Bθ - DS Bθ - B Ψ Bθ - DS Bθ - B Ψ

Avg 26.80 29.24 0.57 3,246 3,672 6.98
Min 2.76 5.12 0.56 1,407 3,605 5.13
Max 107.67 85.72 0.58 3,927 3,939 9.36
Std Dev 30.81 22.20 0.01 685 99 1.01

IX. CONCLUDING REMARKS

We have developed a new MILP-based TC formulation

based on shift factors that is consistent with the ED and UC

formulations currently used in practice for large systems. In

contrast with the widely published Bθ TC formulation, the

shift factor TC formulation is compact and scales with the

number of decision variables (switchable lines) and transmis-

sion constraints (monitored lines and contingencies). While

the shift factor formulation is significantly denser than the

Bθ formulation, it solves orders of magnitude faster in large

systems and for TC problems with a reduced number of

switchable lines where the majority of the relevant operational

constraints are contingency constraints (as is the case in most

practical systems).

Several assumptions used in this paper can be easily relaxed.

While lossless DC power flow assumptions were used for ease

of presentation, our methodology applies to any linearized

power flow assumptions. For example, a linearization gap,

or bias, can easily be incorporated. Marginal loss impacts

can be incorporated by properly adjusting the sensitivities

used, as shown in [26]. Also, it is simple to formulate

hybrid TC problems, where the Bθ model is used to fully

describe normal operating conditions, and the shift factor

model with flow-cancelling transactions are used to enforce

6Even though a max time limit of 3,600 seconds was set, some times are
longer because the solver may be in the middle of an internal iteration.

selected contingency constraints. Multi-period ED and UC

can be accommodated. In these problems, constraints on

the maximum frequency of switching for a branch or the

maximum number of switching operations in a period can be

modeled. Finally the cost of switching can be added in the

objective function.

Future work will focus on the development of iterative

heuristics using the shift factor formulation, explicit modeling

of AC impacts, the incorporation of substation reconfiguration

(opening of near zero-impedance branches) as potential TC

actions, and the study of dynamic topology control in ED and

UC formulations. Also, the shift-factor formulation is promis-

ing for application to transmission maintenance scheduling and

transmission expansion planning, as well as chronological pro-

duction cost and reliability simulation with stochastic topology

(e.g., due to transmission outages) and resources [32].
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[28] T. Güler, G. Gross, and M. Liu, “Generalized line outage distribution
factors,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 879–881, May
2007.

[29] PJM Markets and Operations. PJM Interconnection. Accessed Jan
20, 2016. [Online]. Available: http://http://www.pjm.com/markets-and-
operations.aspx

[30] F. Schweppe, M. Caramanis, R. Tabors, and R. Bohn, Spot Pricing of

Electricity. Norwell, MA: Kluwer, 1988.
[31] M. A. Lane, “Circuit breaker reliability & maintenance,” in

Workshop on Transmission Topology Control, Norristown, PA, Nov.
2013. [Online]. Available: http://www.pjm.com/ /media/committees-
groups/stakeholder-meetings/transmission-topology-control/20131119-
item-05b-lane-circuit-breaker-reliability-and-maintenance.ashx

[32] A. M. Rudkevich, “A nodal capacity market for co-optimization of
generation and transmission expansion,” in Proc. 50th Allerton Conf. on

Communications, Control and Computing, Monticello, IL, Oct. 2012,
pp. 1080–1088.

Page 9 of 9 IEEE PES Transactions on Power Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


